CS6413 OPERATING SYSTEM LAB

gl
it H

 Varuvan Vadivelan

institute of Technology
Dharmapuri — 636 703

LAB MANUAL

Regulation :2013

L\

e

Branch :B.E. - CSE

Year & Semester :II Year /IV Semester

] Ir'-']
) 4

Computer Sé@?

b . \ A A

e & Engineering

r

CS6413 OPERATING SYSTEM LAB

ANNA UNIVERSITY CHENNAI
REGULATION -2013
CS6413 - OPERATING SYSTEMSLABORATORY

LIST OF EXPERIMENTS:

. Basics of UNIX commands.

. Shell programming

. Implementation of CPU scheduling. a) Round Robin b) SJF ¢) FCFS d) Priority
. Implement all file allocation strategies

. Implement Il File Organization Techniques a
. Implement Bankers algorithm for Dead Lock Avoidance

. Implement an Algorithm for Dead Lock Detection

1
2
3
4
5. Implement Semaphores
6
7
8
9

. Implement the all page replacement algorithms a) FIFO b) LRU c¢) LFU
10. Implement Shared memory and 1PC
11. Implement Paging Technique f memory management.

12. Implement Threading & Synchronization Applications

Total hours: 45

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 2

CS6413 OPERATING SYSTEM LAB

SIGNATURE
NAME OF THE EXPERIMENTS OF THE REMARKS
STAFF

Process System Calls

1O System Calls

First Come First Serve Scheduling

Shortest job first Scheduling

Priority Scheduling

Round Robin Scheduling

| PC using Pipe Processing

Producer-consumer problem Using
semaphores

First Fit For Memory Management

File Manipulation-I

File Manipulation-11

Simulate Page Replacement Algorithms
FIFO

Simul ate Page Replacement Algorithms
LRU

Simulate Page Replacement Algorithms
OPTIMAL

Simulate Algorithm For Deadlock
Prevention

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 3

CS6413 OPERATING SYSTEM LAB

Operating System

I ntroduction

A computer system can be divided into 4 components:

Hardware (CPU, memory, input/output devices, etc.),

Operating system,

System programs (word processors, spread sheets, accounting software’s, compilers,)
Application programs.

In 1960’s definition of an operating system is “software that controls the hardware”.
However, today, due to microcode we need a better definition. We see an operating system as the
programs that make the hardware useable. In brief, an operating system is the set of programs that
controls a computer.

An Operating system is software that creates a relation between the User, Software and
Hardware. It isan interface between the all. All the computers need basic software known as an
Operating System (OS) to function.

The OS acts as an interface between the User, Application Programs, Hardware and the
System Peripherals. The OS is the first software to be loaded when a computers starts up. The
entire application programs are loaded after the OS.

Types of Operating System (Based of No. of user):

1. SingleUser: If the single user Operating System is loaded in computer’s memory; the

computer would be able to handle one user at atime.
Ex: MS-Dos, MS-Win 95-98, Win-ME

Multi user: If the multi-user Operating System is loaded in computer’s memory; the
computer would be able to handle more than one user at atime.

Ex: UNIX, Linux, XENIX
Network: If the network Operating System is loaded in computer’s memory; the
computer would be able to handle more than one computer at time.

Ex: Novel Netware, Win-NT, Win-2000-2003

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 4

CS6413 OPERATING SYSTEM LAB

Command Prompt I nterface:

Operating System provides a text based interface called command prompt. From the
command prompt commands can be issued to perform file and disk management and to run

program. Results of these commands are presented to the user as text message.
C:\>-

The command prompt can be an alphabet followed by one colon (), one back slash (\), one
greater than sign (>) and one blinking element called cursor ().

[

icrosoft Windows XP [Uersion 5.1.26881]
KC>» Copyright 1985-2081 Microsoft Corp.

:\Bacgments and Settings“Rama Shankerltc:
*g:\' is not recognized as an internal or external command.
operable program or batch file.

:\Documents and Settings“Rama Shankeric:
:\Documents and Settings“Rama Shankericd-

Hh
NI

Where C: represents the Drive letter (Current Drive)
\ represents the current folder / Directory
> represents the end of the Prompt and

blinking element (represents the Cursor)

CS6413 OPERATING SYSTEM LAB

Oper ating Systems Types

Single- And Multi-Tasking Operating Systems

A single-tasking system can only run one program at a time, while a multi-tasking
operating system allows more than one program to be running in concurrency. Thisis achieved by
time-sharing, dividing the available processor time between multiple processes that are each
interrupted repeatedly in time dices by a task-scheduling subsystem of the operating system.

Multi-tasking may be characterized in preemptive and co-operative types. In preemptive
multitasking, the operating system dices the CPU time and dedicates a slot to each of the
programs. Unix-like operating systems, e.g., Solaris, Linux, as well as AmigaOS support
preemptive multitasking.

Single- And Multi-User Oper ating Systems

Single-user operating systems have no facilities to distinguish users, but may allow
multiple programs to run in tandem. A multi-user operating system extends the basic concept of
multi-tasking with facilities that identify processes and resources, such as disk space, belonging to
multiple users, and the system permits multiple users to interact with the system at the same time.
Time-sharing operating systems schedule tasks for efficient use of the system and may also
include accounting software for cost allocation of processor time, mass storage, printing, and
other resources to multiple users.

Distributed Operating Systems

A distributed operating system manages a group of distinct computers and makes them
appear to be a single computer. The development of networked computers that could be linked
and communicate with each other gave rise to distributed computing. Distributed computations
are carried out on more than one machine. When computers in a group work in cooperation, they
form a distributed system.

Embedded Operating Systems

Embedded operating systems are designed to be used in embedded computer systems.
They are designed to operate on small machines like PDAs with less autonomy. They are able to
operate with a limited number of resources. They are very compact and extremely efficient by
design. Windows CE and “Minix 3”are some examples of embedded operating systems.

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 6

CS6413 OPERATING SYSTEM LAB

Real-Time Operating Systems

A real-time operating system is an operating system that guarantees to process events or
data by a specific moment in time. A real-time operating system may be single- or multi-tasking,
but when multitasking, it uses specialized scheduling algorithms so that a deterministic nature of
behavior is achieved. An event-driven system switches between tasks based on their priorities or
external events while time-sharing operating systems switch tasks based on clock interrupts

Pr ocess Scheduling

Processes are the Small Programs those are executed by the user according to
their Request. CPU Executes all the Process according to Some Rules or Some
Schedule. Scheduling ist hat in which each process have Some Amount of Time of
CPU. Scheduling Provides Time of CPU to the Each Process.

Types of Process Scheduling

1. FCES Scheduling Algorithm

The First Come First Served (FCFS) Scheduling Algorithm is the smplest one. In this
algorithm the set of ready processes is managed as FIFO (first-in-first-out) Queue. The processes
are serviced by the CPU until completion in order of their entering in the FIFO queue.

A process once alocated the CPU keepsit until releasing the CPU either by terminating or
requesting 1/0. For example, interrupted process is allowed to continujre running after interrupt
handling is done with.

2. SJF Scheduling Algorithm

The Shortest Job First Scheduling Algorithm chooses the process that has the smallest next
CPU burst.

3. SRTF: Shortest Remaining Time First

This is the preemptive version of SJF. The currently executing process will be preempted
from the CPU if a process with a shorter CPU burst timeis arrived.

4. Round Robin Scheduling

This scheduling algorithm is designed especially for time sharing systems. It is similar to
FCFS scheduling, but preemption is added to switch between processes.

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 7

CS6413 OPERATING SYSTEM LAB

PROCESSSYSTEM CALLS

To write ¢ program to implement the Process system calls.
ALGORITHM:

. Start the program.
. Declare the pid and get the pid by using the getpid() method.

1
2
3. Create achild process by calling the fork() system call
4

. Check if(pid==0) then print the child processid and then print the parent process value.
Otherwise print
. Stop the program

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 8

CS6413 OPERATING SYSTEM LAB

PROGRAM: (PROCESSSYSTEM CALLYS)
#i ncl ude<st di 0. h>

#i ncl ude<stdl i b. h>

#i ncl ude<uni std. h>

void main(int argc,char *arg[])
{

int pid; pid=fork();

i f(pid<0)

{

printf("fork failed");

exit(l);

}

el se if(pi d==0)

{

execl p("whoani ", "1 s", NULL);

exit(0);

printf("\n Process id is -%l\n",getpid());

wai t (NULL) ;
exit(0);

}

}

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 9

CS6413 OPERATING SYSTEM LAB

OUTPUT:

o Applications Places System @ \i\ _,f

E sree@localho:

File Edit View Search Termiral Help

[sreeflocalhost ~]$ cc open.c

/imp/cc62ZTA0.0: In function "main':

open.c:(.text+9xa9): warning: the "gets' function is dangerous and should not be used.
[sree@localhost ~]$ gedit open.c

[sree@localhost ~]$ cc opan.c

[sreelocalhost ~]$. /a.out

Enter the text now..
[sreeflocalhost ~]$ cc opan.c
[sree@localhost ~]$ gedit open.c
[sree@ilocalhost ~]$./a.out

Enter the text now..
[sree@localhost ~]4$ gedit open.c
[sree@localhost ~]$ cc open.c
[sree@localhost ~]$./a.out

Enter the text now..hai

(at filel Just a /n hal

(at filel is /n hai
[sree@localhost ~]$ cc open.c
[sreeflocalhost ~]$ gedit open.c
[sree@localhost ~]$ cc opan.c
[sree@localhost ~]$./a.out

Enter the text now..hal

(at filel Just a

hal

(at filel is

hai

[sreeflocalhost ~]$ gedit open.c
[sree@ilocalhost ~]$ cc opan.c
[sree@ilocalhost ~]$./a.out

Enter the text now..hal
(at filel is

hai
[sree@localhost ~1$]

RESULT:

Thus the process system call program was executed and verified successfully.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 10

CS6413 OPERATING SYSTEM LAB

IO SYSTEM CALLS

To write a ‘c’ program for 1/O system calls.
ALGORITHM:

. Start the program.
. open afilefor O_RDWR for R/W,0_CREATE for creating afile, O_TRUNC for

truncate afile

3. Using getchar(), read the character and stored in the string[] array

4. Thestring [] array iswriteinto afile closeit.
5. Then thefirst is opened for read only mode and read the characters and displayed It and
closethefile

. Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 11

CS6413 OPERATING SYSTEM LAB

PROGRAM :(10 SYSTEM CALLS)

#i ncl ude<st di 0. h>

#i ncl ude<uni std. h>

#i ncl ude<stri ng. h>

#i ncl ude<fcnt! . h>

mai n()

{

int fd[2];

char buf1l[25]= "just a test\n";
char buf 2[50];

fd[0] =open("filel", O RDWR);

fd[1] =open("fil e2", O RDWR);
wite(fd[0], bufl, strlen(bufl));
printf("\'n Enter the text now...');

scanf ("\n %", buf1);

printf("\n Cat filel is \n hai");
wite(fd[O], bufl, strlen(bufl));
| seek(fd[0], SEEK SET, 0);

read(fd[0], buf2, sizeof(bufl));

wite(fd[1], buf2, sizeof(buf2));

close(fd[0]);
close(fd[1]);
printf("\n");
return O;

}

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 12

OUTPUT:

«™ Applications Places System @ \\fs Zl

CS6413 OPERATING SYSTEM LAB

]

File Edit View Search Terminal Help

[sree@localhost

~1% cc open.c

ftmp/cc62ZTAO0.0: In function main':
open.c:(.text+0xad): warning: the "gets' function is dangerous and should not be used.

[sree@localhost
[sree@localhost
[sree@localhost

Enter the text
[sree@localhost
[sree@localhost
[sree@localhost

Enter the text
[sree@localhost
[sree@localhost
[sree@localhost

Enter the text

Cat filel Just
Cat filel is

[sree@localhost
[sree@localhost
[sree@localhost
[sree@localhost

Enter the text

Cat filel Just
hai

Cat filel is
hai
[sree@localhost
[sree@localhost
[sree@localhost

Enter the text
Cat filel is

hai
[sree@localhost

~1% gedit open.c
~]% cc open.c
~15 ./a.out

NOW....

~1% cc open.c
~]% gedit open.c
~1% ./a.out

NOW...
~]% gedit open.c
~]$ cc open.c
~1% ./a.out
now....hai

a /n hai

/n hai

~]% cc open.c
~1$ gedit open.c
~]% cc open.c
~]1% ./a.out
now.... hai

a

~]% gedit open.c
~]$ cc open.c
~]1% ./a.out

now.... hai

Sk |

RESULT:

Thus the I/0 system call program was executed and verified successfully.

VVIT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

13

CS6413 OPERATING SYSTEM LAB

FIRST COME FIRST SERVE SCHEDULING

To write the program to implement CPU & scheduling algorithm for first come first serve
scheduling.

ALGORITHM:

. Start the program.
. Get the number of processes and their burst time.
Initialize the waiting time for process 1 and O.
Process for(i=2;i<=n;i++),wt.p[i]=p[i-1] +bt.p[i-1].
. Thewaiting time of all the processesis summed then average value time is calculated.
. The waiting time of each process and average times are displayed

. Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 14

CS6413 OPERATING SYSTEM LAB

PROGRAM :(FIRST COME FIRST SERVE SCHEDULING)
#i ncl ude<st di 0. h>
struct process

{
int pid;

int bt;

int wt,tt;

}p[10];

int main()

{

int i,n totwt,tottt,avgl, avg2; clrscr();

printf("enter the no of process \n"); scanf("%", &);
for(i=1;i<=n;i++)

{
pli]. pid=i;
printf("enter the burst tinme n"); scanf("%l", &[i].bt);
}
p[1] . wt =0;
p[1].tt=p[1].bt+p[1].w;
i =2;
whi | e(i <=n)
{
pli].wt=p[i-1].bt+p[i-1].wt; p[i].tt=p[i].bt+p[i].wt;
i+t
i =1;

totwt=tottt=0;

printf("\n processid \t bt\t wt\t tt\n"); while(i<=n){

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 15

CS6413 OPERATING SYSTEM LAB

printf("\n\t%d \t% \t%l \t%d",p[i].pid,p[i].bt,p[i].wt,p[i].tt);
totw=p[i].w+totw;

tottt=p[i].tt+tottt;
i ++;}

avgl=totwt/n; avg2=tottt/n; printf("\navgl=%d \t avg2=%l
\t",avgl, avg2); getch();

return O;

}

OUTPUT:

enter the no of process
enter the burst time
enter the burst time

enter the burst time

Processsid bt wt

RESULT:

Thus the FIFO process scheduling program was executed and verified successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 16

CS6413 OPERATING SYSTEM LAB

SHORTEST JOB FIRST SCHEDULING

To write a program to implement cpu scheduling algorithm for shortest job first
scheduling.

ALGORITHM:

. Start the program. Get the number of processes and their burst time.

. Initialize the waiting time for process 1 as 0.

1
2
3. The processes are stored according to their burst time.
4

. The waiting time for the processes are calculated a follows:
for(i=2;i<=n;i++).wt.p[i]=p[i=1]+bt.p[i-1].
5. Thewaiting time of al the processes summed and then the average time is calcul ate
6. The waiting time of each processes and average time are displayed.

7. Stop the program.

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 17

CS6413 OPERATING SYSTEM LAB

PROGRAM: (SHORTEST JOB FIRST SCHEDULING)
#i ncl ude<st di 0. h>
#i ncl ude<coni 0. h>
struct process
{
int pid;
int bt;
int w;
int tt;
}p[10], tenp;

int main()

int i,j,n totwt,tottt;
float avgl, avg2;

clrscr();

printf("\nEnter the nunber of process:\t");

scanf ("od", &n);

for(i=1;i<=n;i++)
p[i]. pid=i
printf("\nEnter the burst time:\t");

scanf (" %", &l[i].bt);

for(i=1;i<n;i++){

for(j=i+1;j<=n;j++)

i f(p[i].bt>p[j].bt)

tenp. pid=p[i]. pid;

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 18

CS6413 OPERATING SYSTEM LAB

pli].pid=p[j].pid;
p[j]. pi d=tenp. pid;
temp. bt=p[i].bt;p[i].bt=p[j].bt;

p[j].bt=tenp.bt;

p[1] . wt =0;
p[1].tt=p[1].bt+p[1].w;

i =2,

whi | e(i <=n){
pli].wt=p[i-1].bt+p[i-1].wt;
p[i].tt=p[i].bt+p[i].w;

i ++;
i =1,

totwt=tottt=0;

printf("\nProcess id \tbt \tw \ttt");

whi | e(i <=n){

printf("\mtod \t% \t% t%\n",p[i].pid p[i].bt,p[i].w,p[i].tt);

totwt=p[i].wt+totw;
tottt=p[i].tt+tottt;
i ++;
avgl=totwt/ n;

avg2=tottt/n;

printf("\nAVGL=%\t AV&=% ", avgl, avg2);
getch();

return 0; }

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 19

CS6413 OPERATING SYSTEM LAB

OUTPUT:

enter the number of process 3

enter the burst time: 2
enter the burst time: 4
enter the burst time: 6
processid bt wt tt
1 2 0 2
2 2 6

3 6 12

AV (G1=2.000000 AV (G2=6.000000

RESULT:

Thus the SJF program was executed and verified successfully

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 20

CS6413 OPERATING SYSTEM LAB

PRIORITY SCHEDULING

To write a ‘C’ program to perform priority scheduling.

ALGORITHM:

. Start the program.
Read burst time, waiting time, turn the around time and priority.
Initialize the waiting time for process 1 and O.

Based up on the priority process are arranged

. Thewaiting time of all the processesis summed and then the average waiting time

. The waiting time of each process and average waiting time are displayed based on the
priority.
. Stop the program.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 21

CS6413 OPERATING SYSTEM LAB

PROGRAM: (PRIORITY SCHEDULING)
#i ncl ude<st di 0. h>
#i ncl ude<coni 0. h>
struct process
{
int pid;
int bt;
int w;
int tt;

int prior;

p[10], tenp;
int main()
{
int i,j,n, totw,tottt,argl, arg2

clrscr();

printf("enter the nunber of process");

scanf ("%", &n);

=1;i <=n;i ++)

pli].pid=i
printf("enter the burst tine");
scanf (" %", &[i].bt);
printf("\'n enter the priority");
scanf ("%", &[i].prior);
}

for(i=1;i<n;i++)

for(j=i+1;j<=n;j++)

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 22

CS6413 OPERATING SYSTEM LAB

if(p[i].prior>p[j].prior)

tenp. pi d=p[i]. pid;
pli].pid=p[j].pid;
p[j]. pid=tenp. pi d;
tenp. bt=p[i]. bt;
pli].bt=p[j].bt;
plj].bt=tenp. bt;
tenmp. prior=p[i].prior;
pli].prior=p[j].prior;
p[j].prior=tenp.prior;

}

}
pli]. wt=0;
p[1].tt=p[1].bt+p[1]. wt:
i =2;

whi | e(i <=n)

p[i].w=p[i-1].bt+p[i-1].wt;

p[i].tt=p[i].bt+p[i].w;

totwt=tottt=0;

printf("\'n process to \t bt \t wt \t tt");

whi | e(i <=n)

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 23

CS6413 OPERATING SYSTEM LAB

printf("\no%\t %\t %\t %\t", p[i].pid, p[i].bt,p[i].w,p[i].tt);

totwt=p[i].w+totw;

tottt=p[i].tt+tottt;

argl=totwt/n;

arg2=tottt/n;
printf("\n argl=% \t arg2=%l\t", argl, arg2);
getch();

return O;

}

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 24

CS6413 OPERATING SYSTEM LAB

OUTPUT:

enter the no of process:3

enter the burst time:2

enter the priority:3

enter the burst time:4

enter the priority:1

enter the burst time:6

enter the priority:2

processto bt wt
1 4 0
2 6 4
3 2 10

RESULT:

Thus the priority scheduling program was executed and verified successfully

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 25

CS6413 OPERATING SYSTEM LAB

ROUND ROBIN SCHEDULING

To write a program to implement cpu scheduling for Round Robin Scheduling.

ALGORITHM:

1. Get the number of process and their burst time.
Initialize the array for Round Robin circular queue as ‘0’.
. The burst time of each processis divided and the quotients are stored on the round
Robin array.
. According to the array value the waiting time for each process and the average

time are calculated as line the other scheduling.

5. Thewaiting time for each process and average times are displayed.

. Stop the program.

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 26

CS6413 OPERATING SYSTEM LAB

PROGRAM :(ROUND ROBIN SCHEDULING)
#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>

struct process

int pid,bt,tt,w;
b
int main()
{
struct process x[10], p[30];
int i,j,k,tot=0, mn;
float wttine=0.0,totti me=0.0, al, a2;

clrscr();

printf("\nEnter the nunber of process:\t");

scanf (" %", &n) ;

for(i=1;i<=n;i++){

x[i].pid=i

printf("\nEnter the Burst Time:\t");

scanf (" %", &J[i].bt);

tot=tot+x[i].Dbt;

}

printf("\nTotal Burst Tinme:\t%",tot);
p[0] .tt=0;

k=1,

printf("\nEnter the Time Slice:\t");

scanf (" %", &1 ;

for(j=1;j<=tot;j++)

for(i=1;i<=n;i++)

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 27

CS6413 OPERATING SYSTEM LAB

if(x[i].bt !=0)

p[K] . pid=i;
i f(x[i].bt-me0)

p[k].wt=p[k-1].tt;
p[K].bt=x[i].bt;
p[K].tt=p[k].wt +x[i].bt:
x[i]. bt=0;

k++;

p[k] . w=p[k-1].tt;
PLK] . tt=p[k].wt+m
x[i].bt=x[i].bt-m

k++;

printf("\nProcess id \tw \ttt");

for(i=1;i<k;i++){

printf("\nmtod \t% \tod", p[i].pid, p[i].w,p[i].tt);

witime=witime+p[i].w;
tottime=tottine+p[i].tt;
al=wttime/n;

az2=tottinmel/n;

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 28

CS6413 OPERATING SYSTEM LAB

}

printf("\n\nAverage Waiting Tine:\t%", al);

printf("\'n\nAverage TurnAround Tine:\t%", a2);

getch();

return O;

}

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 29

CS6413 OPERATING SYSTEM LAB

OUTPUT:

enter the no of process3
enter the burst time3
enter the burst time5
enter the burst time7
total burst time: 15
enter the time slice: 2
processid wit

1 0

2 2

processid

2 9

3 11

2 12

3 12 14

3 14 15
avg waiting time: 21.666666

avg turnaround time: 26.666666

RESULT:

Thus the Round Robin scheduling program was executed and verified successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 30

CS6413 OPERATING SYSTEM LAB

PIPE PROCESSING

To write a program for create a pope processing

ALGORITHM:

Start the program.

Declare the variables.

Read the choice.

Create a piping processing using | PC.
Assign the variable lengths

“strcpy”” the message lengths.

To join the operation using IPC .

1.
2.
3.
4.
5.
6.
7.
8.

Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 31

CS6413 OPERATING SYSTEM LAB

PROGRAM :(PIPE PROCESSING)
#i ncl ude <uni std. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#define MSG LEN 64
int main(){
i nt result;
i nt fd[2];
char message[M5SG_LEN ;
char recvd_nsg[MSG_LEN] ;
result = pipe (fd);
/I Creating a pipe//fd[0] is for reading and fd[1] is for witing

if (result < 0)

perror("pipe ");
exit(1);

}

strncpy(nessage, "Li nux Wrld!! ", MSG LEN);

result=wite(fd[1], nessage, strl en(nessage));

if (result < 0)

perror("wite");
exit(2);
}
st rncpy(nmessage, "Under st andi ng ", MSG_LEN) ;
result=wite(fd[1], nmessage, strl en(nessage));

if (result < 0)

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 32

CS6413 OPERATING SYSTEM LAB

perror("wite");
exit(2);
}
strncpy(nmessage, "Concepts of ", MSG_LEN);
result=wite(fd[1], nessage, strlen(nessage));

if (result < 0)

perror("wite");
exit(2);
}
strncpy(nmessage, "Piping ", MG LEN);
result=wite(fd[1], message, strlen(nessage));

if (result < 0)

perror("wite");
exit(2);

}

result=read (fd[O0], recvd_nsg, M5G _LEN)

if (result < 0)

perror("read");
exit(3);

}

printf("%\n", recvd_nsg);

return 0;}

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 33

OUTPUT:

Y

File Edit View Search Terminal Help

[sree@localhost ~]$ cc pp.c
[sree@localhost ~]§ ./a.out

Enter string:1

05

er

3

tingEnter 1 array elementz:1
The string length=1
Sum=0[sree@localhost ~]§ er
bash: er: command not found
[sree@localhost ~]§ atingl
bash: atingl: command not found
[sree@localhost ~]$ gedit pp.c
[sree@localhost ~]$ cc pp.c
[sree@localhost ~]§ ./a.out
Linux World!!!

[sree@localhost ~]§ gedit pp.c
[sree@localhost ~]$ cc pp.c
[sree@localhost ~]§ ./a.out
Linux World!! Understanding Concepts of Piping ,
[sree@localhost ~]$ |}

RESULT:

CS6413 OPERATING SYSTEM LAB

Thus the Piping process using IPC program was executed and verified successfully

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 34

CS6413 OPERATING SYSTEM LAB

PRODUCER-CONSUMER PROBLEM USING SEMOPHERES

To implement producer/consumer problem using semaphore.

ALGORITHM:

Declare variable for producer & consumer as pthread-t-tid produce tid consume.
Declare a structure to add items, semaphore variable set as struct.

Read number the items to be produced and consumed.

Declare and define semaphore function for creation and destroy.

Define producer function.

Define consumer function.

Call producer and consumer.

@ N o a k~ 0 NP

Stop the execution.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 35

CS6413 OPERATING SYSTEM LAB

PROGRAM: (PRODUCER-CONSUMER PROBLEM)

#i ncl ude<st di 0. h>

voi d mai n()

int buffer[10], bufsize, in, out, produce, consune, choice=0;

out

buf si ze

whi | e(choi ce !=3)

{
printf("\nl. Produce \t 2. Consunme \t3. Exit");
printf("\nEnter your choice: =");
scanf ("%", &choice);
swi t ch(choi ce)
{
case 1: i f((in+l)%ufsize==out)
printf("\nBuffer is Full");

el se

printf("\nEnter the value: ");
scanf (" %", &produce);
buffer[in] = produce;
in = (in+l)%ufsize
}
br eak;
case 2: if(in == out)
printf("\nBuffer is Enpty");

el se

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 36

CS6413 OPERATING SYSTEM LAB

consune = buffer[out];
printf("\nThe consumed value is %", consune);
out = (out+1) %uf si ze;

}

OUTPUT:
1. Produce 2. Consume 3. Exit
Enter your choice: 2
Buffer is Empty
1. Produce 2. Consume 3. Exit
Enter your choice: 1
Enter the value: 100
1. Produce 2. Consume 3. Exit
Enter your choice: 2
The consumed value is 100
1. Produce 2. Consume 3. Exit

Enter your choice: 3

RESULT:

Thus the producer consumer program was executed and verified successfully

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 37

CS6413 OPERATING SYSTEM LAB

FIRST FIT MEMORY MANAGEMENT

To implement first fit, best fit algorithm for memory management.

ALGORITHM:

. Start the program.
. Get the segment size, number of process to be allocated and their corresponding size.
. Get the options. If the option is ‘2 call first fit function.
If the option is ‘1’ call best fit function. Otherwise exit.
. For first fit, allocate the process to first possible segment which is free and set the

personnel slap as ‘1’. So that none of process to be allocated to segment which is already

allocated and vice versa

. For best fit, do the following steps,.

7. Sorts the segments according to their sizes.

. Allocate the process to the segment which is equal to or dightly greater than the process
size and set the flag as the ‘1’ .So that none of the process to be allocated to the segment
which is aready allocated and vice versa. Stop the program.

. Stop the program

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 38

CS6413 OPERATING SYSTEM LAB

PROGRAM: (FIRST FIT MEMORY MANAGEMENT)

#i ncl ude<st di 0. h>

#i ncl ude<coni o. h>

#define max 25

void main()

{
int frag[max], b[max],f[max],i,]j, nb, nf,tenp, hi ghest =0;
static int bf[max],ff[mx];
clrscr();
printf("\n\t Menory Managenment Schene - First Fit");
printf("\nEnter the nunmber of bl ocks:");
scanf (" %", &nb) ;
printf("Enter the nunber of files:");
scanf (" %", &nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{

printf("Block %d:",i);

scanf (" %", &b[i]);

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

printf("File %:",i);
scanf("%", & [i]);

}

for(i=1;i<=nf;i++)

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 39

CS6413 OPERATING SYSTEM LAB

for(j=1;j<=nb;j++)
{
i f(bf[j]!=1) /1if bf[j] is not allocated
{
temp=b[j]-f[i];

i f(tenmp>=0)

i f (hi ghest <tenp)
{

FELil=j;

hi ghest =t enp;

frag[i]=highest;
bf [ff[i]]=1;

hi ghest =0;
}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBl ock_size:\tFragenment");

for(i=1;i<=nf;i++)
printf("\n%\t\t%\t\t%\t\t%\t\tod",
i, f[i],ff[i],b[ff[i]],frag[i]);
getch();

}

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 40

OUTPUT:
Enter the number of blocks: 3

Enter the number of files; 2

Enter the size of the blocks:-
Block 1: 5
Block 2: 2

Block 3: 7

Enter the size of the files:-
Filel: 1

File2: 4

OUTPUT

File No File Size Block No
1

2

RESULT:

Block Size
6

1

CS6413 OPERATING SYSTEM LAB

Fragment

Thus the First Bit and Best Fit program was executed and verified successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 41

CS6413 OPERATING SYSTEM LAB

EX.NO:10

DATE:

FILE MANIPULATION-I

To write aprogram for file manipulation for displays the file and directory in memory

ALGORITHM:

. Start the program.

Use the pre defined function list out the filesin directory..

1
2
3. Main function is used to check the file present in the directory or not.
4

Using the file pointer in the file to that the argument is less than a times means
print
By using if loop check in file, open two means print error

6. Stop the program.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 42

CS6413 OPERATING SYSTEM LAB

PROGRAM: (FILE MANIPULATION:-I)

#i ncl ude <dirent. h>
#i ncl ude <stdi o. h>
i nt mai n(voi d)
{
DR *d;
struct dirent *dir;
d = opendir(".");
if (d)
{
while ((dir = readdir(d)) !'= NULL)
{
printf("%\n", dir->d_nane);
}

closedir(d);

}

return(0);

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 43

CS6413 OPERATING SYSTEM LAB

OUTPUT:

w > Applications Places System e} Qﬁi Z

_—

File Edit WView 5earch Terminal Help

[3]+ Killed gedit f2.c
[sree@localhost ~]% cc dd.c
[sree@localhost ~]% ./a.out
dd.c~

Pictures

.spice-vdagent

file.c~

.mozilla
.recently-used.xbel
.nNautilus

f2.c

.bashrc

.ssh

Music

open.c
.¥session-errors.old
.gvfs
.Xsession-errors
.fontconfig
.esd _auth
.pulse

Public
Templates
.gstreamer-0.18
.gconfd
.pulse-cookie
.thumbnails
.dbus

.cache

dd.c

open.c~

.gnupg

.config
.bash_history
hai.c
process.c-~

.gnote
.bash _profile
Videos

RESULT:

Thus the file management program was executed and verified successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 44

CS6413 OPERATING SYSTEM LAB

EX.NO:11
DATE:

FILE MANIPULATION-II

To write a program performs file manipulation.

ALGORITHM:

. Start the program.

Declare the arguments for file open and file create.
. print the filein directory otherwise display the error message error in creation
. if check the filesin directory

. closethefilesand directory

. Stop the program.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 45

CS6413 OPERATING SYSTEM LAB

PROGRAM :(FILE MANIPULATION-II)
#i ncl ude<st di o. h>
#i ncl ude<sys/ stat. h>
#i ncl ude<ti me. h>
mai n(int ag, char*arg[])
{
char buf[100];
struct stat s;
int fdi,fd2,n;
f dl=open(arg[1], 0);
fd2=creat (arg[2],0777);
stat (arg[2], &s);
i f(fd2==-1)

printf("ERROR | N CREATI ON');
whi | e((n=read(fdl, buf, si zeof (buf)))>0)

{
i f(write(fd2,buf,n)!=n)

cl ose(fdl);
cl ose(fd2);

}

printf("\t\n U D FOR FILE >0 \n FI LE ACCESS
>0 \n FILE MODI FI ED TI ME >0 \n FILE |- NCDE
>0 \n PERM SSI ON FOR
FI LE >0o\n\n",s.st_uid,ctine(&s.st_atine),ctine(&s.st_nt
i me),s.st_node);

cl ose(fdl);
cl ose(fd2);

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 46

CS6413 OPERATING SYSTEM LAB

OUTPUT:
@ & f « * Applicati
=l sree@localhost:

File Edit View Search Terminal Help

[sree@localhost ~]% gedit ss.c
[sree@localhost ~]$% cc ss.c
55.C:26:15: warning: missing terminating " character

ss.c: In function ‘main’:

55.C:26: error: missing terminating " character

$5.€:27: error: ‘MODIFIED’ undeclared (first use in this function)
55.C:27: error: (Each undeclared identifier is reported only once
s5.C:27: error: for each function it appears in.)

55.C:27: error: expected ')’ before ‘TIME’

55.C:27: error: stray '\’ in program

55.€:27: error: stray ‘\’ in program

ss.C:28: error: stray ‘\' in program

ss5.C:28: error: stray ‘\’ in program

55.C:28:39: warning: missing terminating " character

55.C:28: error: missing terminating " character
[sree@localhost ~]% gedit ss.c

[sree@localhost ~]% cc s5.C

[sree@localhost ~]% ./a.out

ERROR IN CREATION

UID FOR FILE....... =1

FILE ACCESS TIME..... =5at Apr 4 17:20:04 1970

FILE MODIFIED TIME........ =Sat Apr 4 17:20:84 1970
FILE I-NODE NUMBER...... =

PERMISSION FOR FILE..... 227757524304

[sree@localhost ~]$ []

RESULT:

Thus the File Manipulation Il program was executed and verified successfully.

CS6413 OPERATING SYSTEM LAB

SIMULATE PAGE REPLACEMENT ALGORITHMSEFIFO

To Simulate FIFO page replacement algorithms.

ALGORITHM:

Start the program

Read the number of frames

Read the number of pages

Read the page numbers

Initialize the valuesin framesto -1

Allocate the pagesin to framesin First in first out order.

Display the number of page faults.

1.
2.
3.
4.
5.
6.
7.
8.

Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 48

CS6413 OPERATING SYSTEM LAB

PROGRAM: (SIMULATE PAGE REPLACEMENT ALGORITHMSFIFO)
#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
int i,j,nof,nor,flag=0,ref[50],frn{50], pf=0, victim=-1;
voi d main()
{
clrscr();
printf("\n \t\t\t FIFI PAGE REPLACEMENT ALGCORI THV');
printf("\n Enter no.of frames....");
scanf (" %", &nof) ;
printf("Enter nunmber of Pages.\n");
scanf (" %", &nor);
printf("\n Enter the Page No...");
for(i=0;i<nor;i++)
scanf ("%d", & ef[i]);
printf("\nThe given Pages are:");
for(i=0;i<nor;i++)
printf("%d",ref[i]);
for(i=1;i<=nof;i++)
frmji]=-1
printf("\n");
for(i=0;i<nor;i++)
{
f1 ag=0;

printf("\n\t page no %->\t",ref[i]);

for(j=0;j<nof;j++)
{
if(frnfj]==ref[i])

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 49

CS6413 OPERATING SYSTEM LAB

b}
i f (f1 ag==0)

pf ++;

Vi cti m+;

vi ctimrvi cti nPmof;
frojvictim=ref[i];

for(j=0;j<nof;j++)

printf("o4d", frn{j]);

Pl
printf("\n\in\t\t No.of pages faults...%", pf);

getch();

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 50

CS6413 OPERATING SYSTEM LAB

OUTPUT:
FIFO PAGE REPLACEMENT ALGORITHM

Enter no.of frames....4
Enter number of reference string..

6

Enter the reference string..

564123

The given reference string:

56412 3

Reference np5->
Reference np6->
Reference np4->
Reference npl->
Reference np2->
Reference np3->

No.of pagesfaults...6

RESULT:

Thus the program FIFO page replacement was successfully executed.

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 51

CS6413 OPERATING SYSTEM LAB

EX NO:13
DATE :
SIMULATE PAGE REPLACEMENT ALGORITHMS: LRU

AlM:

To Simulate LRU page replacement algorithms

ALGORITHM:

. Start

. Read the number of frames
. Read the number of pages

. Read the page numbers

. Initialize the valuesin framesto -1

. Allocate the pages in to frames by selecting the page that has not been used for the longest

period of time.
. Display the number of page faults.
. stop

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 52

CS6413 OPERATING SYSTEM LAB

PROGRAM: (SIMULATE PAGE REPLACEMENT ALGORITHMS: LRU)
#i ncl ude<st di 0. h>

#i ncl ude<coni o. h>

int i,j,nof,nor,flag=0,ref[50],frn{50], pf=0, victim=-1;

int recent[10],Irucal [50], count =0;
int lruvictim);
voi d mai n()
{
clrscr();
printf("\n\t\t\t LRU PAGE REPLACEMENT ALGORI THM');
printf("\n Enter no.of Frames....");
scanf (" %", &nof);
printf(" Enter no.of reference string..");
scanf (" %", &nor);
printf("\n Enter reference string..");
for(i=0;i<nor;i++)
scanf ("%d", & ef[i]);
printf("\n\n\t\t LRU PAGE REPLACEMENT ALGORI THM ");
printf("\n\t The given reference string:");
Printf("\ N - B
for(i=0;i<nor;i++)
printf("%d",ref[i]);
for(i=1;i<=nof;i++)
{
frmi]=-1;

I rucal [i]=0;

for(i=0;i<10;i++)

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 53

CS6413 OPERATING SYSTEM LAB

recent[i]=0;
printf("\n");
for(i=0;i<nor;i++)
{

fl ag=0;

printf("\n\t Reference NO %->\t",ref[i]);

for(j=0;j<nof;j++)

{

if(frrmfj]==ref[i])

flag=1;

br eak;

i f(flag==0)
{
count ++;
i f(count <=nof)
vi cti mk+;
el se
victinel ruvictin();
pf ++;
frojfvictini=ref[i];
for(j=0;j<nof;j++)
printf("ogd",frnfj]);
}

recent[ref[i]]=i;

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 54

CS6413 OPERATING SYSTEM LAB

}
printf("\n\n\t No.of page faults...%", pf);

getch();
}

int lruvictin)

{
int i,j,tenpl,tenp2;

for(i=0;i<nof;i++)

templ=frnfi];

Irucal [i]=recent[tenpl];

}
tenp2=lrucal [0];
for(j=1;j<nof;j++)
{

if(temp2>lrucal[j])
temp2=lrucal [j];
}
for(i=0;i<nof;i++)
if(ref[temp2]==frnfi])
return i;

return O;

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 55

CS6413 OPERATING SYSTEM LAB

OUTPUT:
LRU PAGE REPLACEMENT ALGORITHM
Enter no.of Frames....3
Enter no.of reference string..6
Enter reference string..

654231

LRU PAGE REPLACEMENT ALGORITHM
The given reference string:

6 54231

Reference NO 6->
Reference NO 5->
Reference NO 4->
Reference NO 2->
Reference NO 3->

Reference NO 1->

No.of page faults...6

RESULT:

Thus the process LRU page replacement was executed and verified successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 56

CS6413 OPERATING SYSTEM LAB

EX.NO:14

DATE!:

SIMULATE PAGE REPLACEMENT ALGORITHMS: OPTIMAL

To create program for optimal page replacement a gorithms.

ALGORITHM:

. Start the program

. Read the number of frames
. Read the number of pages

. Read the page numbers

. Initialize the values in frames to -1

6. Allocate the pages in to frames by selecting the page that will not be used for the

longest period of time.
7. Display the number of page faults.

8. Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 57

CS6413 OPERATING SYSTEM LAB

PROGRAM: (SSMULATE PAGE REPLACEMENT ALGORITHMS: OPTIMAL)

#i ncl ude<st di 0. h>
#i ncl ude<coni o. h>
int i,j,nof,nor,flag=0,ref[50],frni50], pf=0, victim=-1;
int recent[10], optcal [50], count =0;
int optvictim);
voi d mai n()
{
clrscr();
printf("\'n OPTI MAL PAGE REPLACEMENT ALGORI THN');
printf("\n
printf("\nEnter the no.of franes");
scanf (" %", &nof) ;
printf("Enter the no.of reference string");
scanf (" %", &nor);
printf("Enter the reference string");
for(i=0;i<nor;i++)
scanf("%", &ef[i]);
clrscr();
printf("\'n OPTI MAL PAGE REPLACEMENT ALGORI THM');
printf("\n
printf("\nThe given string");
printf("\n
for(i=0;i<nor;i++)
printf("od",ref[i]);
for(i=0;i<nof;i++)
{
frnmfi]=-1

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 58

CS6413 OPERATING SYSTEM LAB

optcal [i]=0;
}
for(i=0;i<10;i++)
recent[i]=0;
printf("\n");
for(i=0;i<nor;i++)
{
fl ag=0;
printf("\n\tref no % ->\t",ref[i]);
for(j=0;j<nof;j++)
{
if(frnfj]==ref[i])
{
flag=1;

br eak;

}
i f(flag==0)
{
count ++;
i f(count <=nof)
vi cti m+;
el se
victimeoptvictin(i);
pf ++;

frmfvictini=ref[i];

for(j=0;j<nof;j++)

printf("%d",frn{j]);

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 59

CS6413 OPERATING SYSTEM LAB

}
printf("\'n Nunber of page faults: %", pf);

getch();
}
int optvictin(int index)
{
int i,j,tenp,notfound;
for(i=0;i<nof;i++)
{
not f ound=1;
for(j=index;j<nor;j++)
if(frnfi]==ref[j])
{
not f ound=0;
optcal [i]=;
br eak;

}

i f(notfound==1)

return i;
}
t enp=opt cal [0] ;
for(i=1;i<nof;i++)
i f(tenmp<optcal[i])
tenp=optcal [i];
for (i=0;i<nof;i++)
if(frrftemp]==frnii])
return i;

return O;

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 60

CS6413 OPERATING SYSTEM LAB

OUTPUT:
OPTI MAL PAGE REPLACEMENT ALGORI THM

Enter no. of Franes....3

Enter no. of reference string..6

Enter reference string..

654231

OPTIMAL PAGE REPLACEMENT ALGORITHM
The given reference string:

654231

Reference NO 6->
Reference NO 5->
Reference NO 4->
Reference NO 2->
Reference NO 3->

Reference NO 1->

No.of page faults...6

RESULT:

Thus the process optimal page replacement was executed and verified
successfully.

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 61

CS6413 OPERATING SYSTEM LAB

EX NO: 15

DATE:

SIMULATE ALGORITHM FOR DEADLOCK PREVENTION

AlM.

To Simulate Algorithm for Deadlock prevention
ALGORITHM:

1. Start the program
2. Attacking Mutex condition: never grant exclusive access. But this may not be possible for
several resources.
. Attacking preemption: not something you want to do.
. Attacking hold and wait condition: make a process hold at the most 1 resource
. At atime. Make al the requests at the beginning. Nothing policy. If you feel, retry.
. Attacking circular wait: Order all the resources. Make sure that the requests areissued in
the
. Correct order so that there are no cycles present in the resource graph. Resources
numbered 1 ... n.

. Resources can be requested only in increasing

. Order. i.e. you cannot request a resource whose no isless than any you may be holding.

10. Stop the program

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 62

CS6413 OPERATING SYSTEM LAB

PROGRAM: (SSIMULATE ALGORITHM FOR DEADLOCK PREVENTION)
#i ncl ude<st di 0. h>

#i ncl ude<coni o. h>

int max[10][10], alloc[10][10], need[10][10];

int avail[10],i,j,p,r,finish[10]={0}, flag=0;

int main()

{

clrscr();

printf("\'n\nSI MJLATI ON OF DEADLOCK PREVENTI ON');
printf("Enter no. of processes, resources");

scanf ("%%", &p, &) ; printf("Enter allocation matrix");
for(i=0;i<p;i++)

for(j=0;j<r;j++)

scanf ("%", &l locl[i][]j]);

printf("enter max matrix");

for(i=0;i<p;i++) /*reading the maxi mum matri x and availale matrix*/
for(j=0;j<r;j++)

scanf ("%", &rex[i][j]);

printf("enter available matrix");

for(i=0;i<r;i++)

scanf ("%", &avail[i]);

for(i=0;i<p;i++)

for(j=0;j<r;j++)

need[i][j]=max[i][j]-alloc[i][j];

fun(); /*calling function*/
i f (f1 ag==0)

{

i f(finish[i]!=1)

{

printf("\n\n Failing : Mutual exclusion");

T —
VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 63

CS6413 OPERATING SYSTEM LAB

for(j=0;j<r;j++)

{ /*checking for rmutual exclusion*/
if(avail[j]<need[i][j])

avail [j]=need[i][j];

Hun();

printf("\n By allocating required resources to process %l dead |lock is
prevented ",i);

printf("\n\n |lack of preenption");

for(j=0;j<r;j++)

{

if(avail[j]l<need[i][j])

avail[j]=need[i][]];

al loc[i][j]=0;

}

fun();

printf("\n\n daed lock is prevented by allocating needed resources");

printf(" \n \n failing:Hold and Wait condition ");

for(j=0;j<r;j++)
{
if(avail[j]<need[i][j])

avail[j]=need[i][]j];

}

fun();

printf("\'n AVO DI NG ANY ONE OF THE CONDI TI ON, U CAN PREVENT DEADLCCK");
}

}

getch(); return O;

}

fun()

{
whi | e(1)

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 64

CS6413 OPERATING SYSTEM LAB

{
for(flag=0,i=0;i<p;i++)
{

i f(finish[i]==0)

{

for(j=0;j<r;j++)

{
if(need[i][j]<=avail[j])
conti nue;

el se

br eak;

}

if(j==r)

{
for(j=0;j<r;j++)

avail [j]+=alloc[i][j];
fl ag=1;
finish[i]=1;

i f(flag==0)
br eak;

}return O;

}

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 65

CS6413 OPERATING SYSTEM LAB

OUTPUT:
SIMULATION OF DEADLOCK PREVENTION
Enter no. of processes, resources 3, 2
Enter allocation matrix 245
345

Enter max matrix4 3 4

561
Enter available matrix2

Failing: Mutual Exclusion

By allocating required resources to process dead is prevented

Lack of no preemption deadlock is prevented by allocating needed resources

Failing: Hold and Wait condition

RESULT:

Thus the program deadl ock was executed successfully.

T —

VVIT DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 66

